Please wait...

Mathematics Test - 20
Result
Mathematics Test - 20
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0

    The value of K, for which the equation (K–2)x2 + 8x + K + 4 = 0 has both the roots real distinct and negative is:

    Solutions
    (K2)x2+8x+K+4=0
    x2+8(K2)x+K+4(K2)=0
    Let f(x)=x2+8(K2)x+K+4(K2)
    If the equation f(x)=0, has real distinct and negative roots then:
    D>0&f(0)>0&B2A<0
    (i) D>082(K2)24(K+4)K2>0
    644(k2+2K8)>0
    k22K+24<0K2+2K24<0
    (K+6)(K4)<0
    (ii)(f(0)>0(K+4)(K2)>0).
    K<4 or K>2
    (iii) B2Λ<082(K2)<04(K2)>0
    K2>0
    K>2
    D>0&f(0)>0&
    B2A<0
    6<K<4&(K<4 or K>2)&K>2
    6<K<48k<48K>2) or (K>28K>2
    -62)
    2<K<4
    K(2,4)
    Hence, the correct option is C.
  • Question 2/10
    1 / -0

    If A and B are two square matrices such that B = –A–1 BA, then (A+B)2 is equal to

    Solutions
    B=A1BA
    AB=A(A1BA)
    AB=AA1BA)
    AB=BA
    AB+BA=0
    Now, (A+B)2=A2+B2+AB+BA
    (A+B)2=A2+B2,(AB+BA=0)
    Hence, the correct option is B.
  • Question 3/10
    1 / -0

    For n2 the product {1+α,{}+α2}{1+α22},,{1+α2n}, where α=(1+i2), is equal to...

    Solutions
    Let 1+i2=x Hence the given series S is S=(1+x/1+x2)(1+x4)(1+x2n)
    S(1x)=1x2n1
    S=1x2n+11x=1x2+111+i2
    =1(1+i222)2n+1(1i2)=1(1+i2)2n+1(22)2n+1(1i2)
    =2(1+i{1(1)2n122n}2
    =(1+i(122n)(n2(1)2n1=1)
    Hence, the correct option is A.
  • Question 4/10
    1 / -0

    All the roots of a1z3+a2z2+a3z+a4=3, where |ai|1(i=1,2,3,4)
    Solutions
    If possible let z= re iθ be a root which lies inside |z|=2/3. Hence 0r<2/3 Hence a1(reiθ)3+a2(reiθ)2+a3(reiθ)+a4=3
    Comparing real parts we get a1t3cos3θ+a2r2cos2θ+a3rcosθ+a4=3
    but (r3a1cos3θ+r2a2cos2θ+ra3cosθ+a4)
    r3+r2+r+1
    (Qlail 1& so also cos3θ,cos2θ&cosθ)
    3r3+r2+r+1
    r41r13
    1r41r3
    11r3
    1r13
    113
    r2/3
    Which is a contradiction to the assumption 0x<2/3. Hence no root of the given equation can lie inside the circle. |z|=23
    Hence, the correct option is A.
  • Question 5/10
    1 / -0

    The coefficient of the term independent of x in the expansion of (1+x+2x3)(32x213x)9is:

    Solutions
    The general term of the expansion of (32x213x)9 is
    Tr+1=9Cr(32x2)9r(13x)r
    =9Cr(32)9t(13x)r
    The coefficient of independent of x in the expansion of (1+x+2x3) (32x213x)9= sum of coefficient of x0,x12x3 in expansion of (32x213x)9
    (i) For coefficient of x0:183r=0,, according to (1):r=6. Put in (i):
    T7=9C6(32)96(13)6=9C3(32)3(13)6
    =9C3163=718
    (ii) For Coefficient of x3:183r=1 or, r=19/3= fraction. No such term exists.
    (iii) For coefficient of 2x3:183r=3 or, r=7. Put in (i):
    T8=2[9C7(32)97(13)7]
    =(9C2)(2(32)2(1)(13)7=227
    Sum of coefficients =718227=1754
    Hence, the correct option is C.
  • Question 6/10
    1 / -0

    a, b, c are positive numbers and abc2 has the greatest value 1/ 64. Then...

    Solutions
    We have,
    a+b+c2+c24abc2c24
    or, a+b+c4abc244
    (a+b+c4)4abc24
    or abc2164(a+b+c)4
    the greatest value of abc2=164(a+b+c)4
    Also for the greatest value of abc 2 the numbers have to be equal, i.e a=b=c/2 Also given that maximum value =1/64 s0,a+b+c=1
    i.e. a=b=1/4,c=1/2
    Hence, the correct option is B.
  • Question 7/10
    1 / -0

    If f(x)=x+1xxR(0) then,

    Solutions
    f(x)=x+1xf(x3)=x3+1x3
    f(x)=x+1x=f(1x)=1x+xf(x)=f(1x)
    f3(x)=(x+1x)3
    =(x3+1x3)+3x1x(x+1x)
    =(x3+1x3)+3(x+1x)
    =f(x3)+3f(x)
    =f(x3)+3f(1x)[f(x)=f(1x)]
    Hence, the correct option is A.
  • Question 8/10
    1 / -0

    The value of limx13x+1942x+164 is...

    Solutions
    Substitute (x1)=t.
    x1(x1)0t0
    Here given limit is:
    limx13x+1942x+164=limt03t+2942(t+1)+164
    =limt03t323242t4343=limt09(3t1)64(42t1)
    =limt0964(3t1t)t(42t12t)2t=limt0964ln3ln412=9ln3128ln4
    Hence, the correct option is B.
  • Question 9/10
    1 / -0

    The altitude of a cone is 20cm and its semi-vertical angle is 30 °. If the semi-vertical angle is increasing at the rate of 2 ° per second, then the radius of the base is increasing at the rate of.....

    Solutions

    dθdt=2 per second
    =2×π180rad/sec
    =π90rad/sec
    θ=30=π6radian
    Let \thetabe the semi-vertical angle and r be the base radius of the cone at time t. Then, r=20tanθ
    drdt=20sec2θdθdt
    drdt]θ=π6=(20sec2π6)×π90
    drdt]θ=π6=20×43×π90=8π27cm/sec
    Hence, the correct option is B.

  • Question 10/10
    1 / -0

    The set of all values of the parameter a for which the points of minimum of the function y=1+a2xx3 Satisfy the inequality x2+x+2x2+5x+60 is,

    Solutions
    y=1+a2xx3
    y=a23x2
    y=6x
    y=0a23x2=0x=±a3
    (i) Let a>0: Hence y//>0 for x=a3. Hence y has minima at x=a3 for a>0. 3<a3<223<2<33
    (ii) Let a<0 :
    Hence y//>0 for x=a3. Hence y has minima at x=a3 for a<0. 3<a3<233<2<23
    From
    (i) 8( ii ) a (33,23)(23,33)
    Hence, the correct option is D.
User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now