Please wait...

Mathematics Test - 25
Result
Mathematics Test - 25
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0

    An integer is chosen at random from the integers 1,2,3,,50. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is:

    Solutions

    Given set ={1,2,3,..50}

    P(A)= Probability that number is multiple of 4

    P(B)= Probability that number is multiple of 6

    P(C)= Probability that number is multiple of 7

    Now,

    P(A)=1250,P(B)=850,P(C)=750

    again

    P(AB)=450,P(BC)=150,P(AC)=150P(ABC)=0

    Thus

    P(ABC)=1250+850+750450150150+0

    =2150

  • Question 2/10
    1 / -0

    2(2cos2θ1)cos6θ is equal to:
    Solutions
    Given,
    2(2cos2θ1)cos6θ
    =2cos2θcos6θ (cos2θ=2cos2θ1)
    =2cos6θcos2θ
    As we know that,
    2cosxcosy=cos(x+y)+cos(xy)
    2cos6θcos2θ=cos(6θ+2θ)+cos(6θ2θ)
    =cos8θ+cos4θ
  • Question 3/10
    1 / -0

    Let A=[2126211332] and P=[120502715]. The sum of the prime factors of |P1AP2I| is equal to:

    Solutions

    |P1AP2I|=|P1AP2P1P|

    =|P1(A2I)P|

    =|P1||A2I||P|

    =|A2I|

    =|0126011330|=69

    So, Prime factor of 69 is 3&23

    So, sum =26

  • Question 4/10
    1 / -0

    Let f:[1,3]R be defined as

    f(x)={|x|+[x],1x<1x+|x|,1x<2x+[x],2x3

    where [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at:

    Solutions

    Given function is,

    f(x)={|x|+[x],1x<1x+|x|,1x<2x+[x],2x3={x1,1x<0x,0x<12x,1x<2x+2,2x<36,x=3

    f(1)=0,f(1+)=0

    f(0)=1,f(0)=0,f(0+)=0

    f(1)=1,f(1)=2,f(1+)=2

    f(2)=4,f(2)=4,f(2+)=4

    f(3)=5,f(3)=6

    f(x) is discontinuous at x={0,1,3}

    Hence, f(x) is discontinuous at only three points.

  • Question 5/10
    1 / -0

    Let λR,a=λi^+2j^3k^,b=i^λj^+2k^.

    If a+b)×(a×b×(ab)=8i^40j^24k^, then |λ(a+b)×(ab)|2 is equal to:

    Solutions

    a=λi^+2j^3k^b=i^λj^+2k^(ba)×a+b)×(a×b=8i^40j^24k^ab)(a+b(a×b)=8i^40j24k^8(a×b)=8i^40j^24k^

    Now, a×b=|i^j^k^λ231λ2|

    =(43λ)i^(2λ+3)j^+(λ22)k^λ=1a=i^+2j^3k^b=i^j^+2k^a+b=2i^+j^k^,ab=3j^5k^

    (a+b)×(ab)=|i^j^k^211035|=2i^+10j^+6k^

     required answer =4+100+36=140

  • Question 6/10
    1 / -0

    If a,b,c are three non-zero vectors and n^ is a unit vector perpendicular to c such that a=αbn^,(α0) and bc=12, then |c×(a×b)| is equal to:

    Solutions

  • Question 7/10
    1 / -0

    Using the principle of mathematical induction, prove that 1×3+2×32+3×33++n×3n=(2n1)3n+1+34 for all:

    Solutions

    Given:

    P(n):1×3+2×32+3×33++n×3n =(2n1)3n+1+34

    For n=1,

    L H.S =1×3=3 and R.H.S. =(2×11)31+1+34=32+34=124=3

    Thus P(1) is true.

    P(n) be true for some n=k.

    1×3+2×32+3×33++k×3k =(2k1)3k+1+34

    Now, P(n) is true for n=k+1.

    1×3+2×32+3×33++(k+1)×3k+1 =(2k+1)3k+2+34

    Adding (k+1)×3k+1 on both sides, we get

    1×3+2×32+3×33++k×3k+(k+1)×3k+1 =(2k1)3k+1+34+(k+1)×3k+1

    =(2k1)3k+1+34(k+1)3k+14

    =3k+1[2k1+4(k+1)]+34

    =3k+1(6k+3)+34

    =3(k+1)+1(2k+1)+34

    =(2k+1)3k+2+34

    Thus, P(k+1) is true whenever P(k) is true.

    By the principle of mathematical induction, statement P(n) is true for all natural numbers.

  • Question 8/10
    1 / -0

    If 4x+3<6x+7, then x belongs to the interval

    Solutions

    Given,

    4x+3<6x+7

    Subtracting 3 from both sides.

    4x+33<6x+73

    4x<6x+4

    Subtracting 6x from both sides,

    4x6x<6x+46x

    2x<4 or 

    x>2 i.e., all the real numbers greater than 2, are the solutions of the given inequality.

    So, the solution set is (2,), i.e. x(2,)

  • Question 9/10
    1 / -0

    Evaluate the expression: 1+cosθ1cosθ=?

    Solutions

    Given, 1+cosθ1cosθ

    1+cosθ1cosθ=(1+cosθ)×(1+cosθ))(1cosθ)×(1+cosθ)) (By rationalization) 

    1+cosθ1cosθ=(1+cosθ)21cos2θ

    1+cosθ1cosθ=(1+cosθ)2sin2θ(1cos2x=sin2x)

    1+cosθ1cosθ=(1+cosθsinθ)2

    1+cosθ1cosθ=1+cosθsinθ

    1+cosθ1cosθ = 1sinθ+cosθsinθ

    1+cosθ1cosθ = cosecθ+cotθ (cosecx=1sinx,cotx=cosxsinx)

  • Question 10/10
    1 / -0

     If A={xR:|x|<2} and B={xR:|x2|3}; then : 

    Solutions
    A={x:x(2,2)}

    B={x:x(,1][5,)}
    AB={x:x(2,1]}
    AB={x:x(,2)[5,)}
    AB={x:x(1,2)}
    BA={x:x(,2][5,)}

User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now