Please wait...
/
-
An integer is chosen at random from the integers 1,2,3,…,50. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is:
Given set ={1,2,3,……..50}
P(A)= Probability that number is multiple of 4
P(B)= Probability that number is multiple of 6
P(C)= Probability that number is multiple of 7
Now,
P(A)=1250,P(B)=850,P(C)=750
again
P(A∩B)=450,P(B∩C)=150,P(A∩C)=150P(A∩B∩C)=0
Thus
P(A∪B∪C)=1250+850+750−450−150−150+0
=2150
Let A=[2126211332] and P=[120502715]. The sum of the prime factors of |P−1AP−2I| is equal to:
|P−1AP−2I|=|P−1AP−2P−1P|
=|P−1(A−2I)P|
=|P−1||A−2I||P|
=|A−2I|
=|0126011330|=69
So, Prime factor of 69 is 3&23
So, sum =26
Let f:[−1,3]→R be defined as
f(x)={|x|+[x],−1≤x<1x+|x|,1≤x<2x+[x],2≤x≤3
where [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at:
Given function is,
f(x)={|x|+[x],−1≤x<1x+|x|,1≤x<2x+[x],2≤x≤3={−x−1,−1≤x<0x,0≤x<12x,1≤x<2x+2,2≤x<36,x=3
⇒f(−1)=0,f(−1+)=0
f(0−)=−1,f(0)=0,f(0+)=0
f(1−)=1,f(1)=2,f(1+)=2
f(2−)=4,f(2)=4,f(2+)=4
f(3−)=5,f(3)=6
f(x) is discontinuous at x={0,1,3}
Hence, f(x) is discontinuous at only three points.
Let λ∈R,a→=λi^+2j^−3k^,b→=i^−λj^+2k^.
If a→+b→)×(a→×b→×(a→−b→)=8i^−40j^−24k^, then |λ(a→+b→)×(a→−b→)|2 is equal to:
a→=λi^+2j^−3k^b→=i^−λj^+2k^⇒(b→−a→)×a→+b→)×(a→×b→=8i^−40j^−24k^⇒a→−b→)⋅(a→+b→(a→×b→)=8i^−40j−24k^⇒8(a→×b→)=8i^−40j^−24k^
Now, a→×b→=|i^j^k^λ2−31−λ2|
=(4−3λ)i^−(2λ+3)j^+(−λ2−2)k^⇒λ=1∴a→=i^+2j^−3k^b→=i^−j^+2k^⇒a→+b→=2i^+j^−k^,a→−b→=3j^−5k^
⇒(a→+b→)×(a→−b→)=|i^j^k^21−103−5|=2i^+10j^+6k^
∴ required answer =4+100+36=140
If a→,b→,c→ are three non-zero vectors and n^ is a unit vector perpendicular to c→ such that a→=αb→−n^,(α≠0) and b→⋅c→=12, then |c→×(a→×b→)| is equal to:
Using the principle of mathematical induction, prove that 1×3+2×32+3×33+…+n×3n=(2n−1)3n+1+34 for all:
Given:
P(n):1×3+2×32+3×33+…+n×3n =(2n−1)3n+1+34
For n=1,
L H.S =1×3=3 and R.H.S. =(2×1−1)31+1+34=32+34=124=3
Thus P(1) is true.
P(n) be true for some n=k.
1×3+2×32+3×33+…+k×3k =(2k−1)3k+1+34
Now, P(n) is true for n=k+1.
1×3+2×32+3×33+…+(k+1)×3k+1 =(2k+1)3k+2+34
Adding (k+1)×3k+1 on both sides, we get
1×3+2×32+3×33+…+k×3k+(k+1)×3k+1 =(2k−1)3k+1+34+(k+1)×3k+1
=(2k−1)3k+1+3∣4(k+1)3k+14
=3k+1[2k−1+4(k+1)]+34
=3k+1(6k+3)+34
=3(k+1)+1(2k+1)+34
=(2k+1)3k+2+34
Thus, P(k+1) is true whenever P(k) is true.
By the principle of mathematical induction, statement P(n) is true for all natural numbers.
If 4x+3<6x+7, then x belongs to the interval
Given,
4x+3<6x+7
Subtracting 3 from both sides.
4x+3−3<6x+7−3
⇒4x<6x+4
Subtracting 6x from both sides,
4x−6x<6x+4−6x
⇒−2x<4 or
⇒x>−2 i.e., all the real numbers greater than −2, are the solutions of the given inequality.
So, the solution set is (−2,∞), i.e. x∈(−2,∞)
Evaluate the expression: 1+cosθ1−cosθ=?
Given, 1+cosθ1−cosθ
⇒1+cosθ1−cosθ=(1+cosθ)×(1+cosθ))(1−cosθ)×(1+cosθ)) (By rationalization)
⇒1+cosθ1−cosθ=(1+cosθ)21−cos2θ
⇒1+cosθ1−cosθ=(1+cosθ)2sin2θ(∵1−cos2x=sin2x)
⇒1+cosθ1−cosθ=(1+cosθsinθ)2
⇒1+cosθ1−cosθ=1+cosθsinθ
⇒1+cosθ1−cosθ = 1sinθ+cosθsinθ
⇒1+cosθ1−cosθ = cosecθ+cotθ (∵cosecx=1sinx,cotx=cosxsinx)
If A={x∈R:|x|<2} and B={x∈R:|x−2|≥3}; then :
B={x:x∈(−∞,−1]∪[5,∞)} A∩B={x:x∈(−2,−1]} A∪B={x:x∈(−∞,2)∪[5,∞)} A−B={x:x∈(−1,2)} B−A={x:x∈(−∞,−2]∪[5,∞)}
Correct (-)
Wrong (-)
Skipped (-)