Please wait...

Numerical Ability Test - 11
Result
Numerical Ability Test - 11
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    5 / -1

    In the given figure AB ∥ CD and EF is the transversal line. ∠AGE = 3x and ∠GHD = 2x. Find the value of x.

    Solutions

    Given:

    AB ∥ CD

    ∠AGE = 3x

    ∠GHD = 2x

    Concept:

    Vertical opposite angles are equal.

    If a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel.

    Calculation:

    ∠AGE = ∠BGH = 3x (Vertical opposite angles) 

    ∠GHD = ∠CHF = 2x (Vertical opposite angles) 

    ∠BGH + ∠GHD = 180° 

    (if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel.)

    ⇒ 3x + 2x = 180° 

    ⇒ 5x = 180° 

    ⇒ x = 36° 

    ∴ The value of x is 36° 

    The correct option is 2 i.e. 36°

  • Question 2/10
    5 / -1

    Final the value of x in the given figure where PA || QC

    Solutions

    Calculation

    Draw a line XB parallel to PA and QC

    ∠ PAB and ∠ ABX are co interior angles

    Let ∠ ABX be x and ∠ XBC be y

    ⇒ 135° + ∠ x = 180

    ⇒ ∠ x = 45° 

    ∠ XBC and ∠ BCQ are co interior angles

    ⇒ 150° + ∠ y = 180

    ⇒ ∠ y = 30° 

    ∠ B = ∠ x + ∠ y 

    ∠ B = 30°  + 45°  = 75° 

  • Question 3/10
    5 / -1

    In the given figure, ∠ABC = 80°, ∠BAC = 40° and ∠CDE = 70°. What is the value of x?

    Solutions

    Given:

    ∠ABC = 80°, ∠BAC = 40° and ∠CDE = 70°

    Concept used:

    The sum of all the angles of the triangle is 180° 

    Vertically opposite angle is equal

    Sum of all the angles on the straight line is 180° 

    Calculation:

    In ΔABC

    ∠ABC + ∠BAC + ∠ACB = 180° 

    ⇒ 80° + 40° + ∠ACB = 180° 

    ⇒ ∠ACB = 180° - 120° 

    ⇒ ∠ACB = 60°

    ∠ACB = 60° =  ∠DCE

    Now, In ΔCDE

    ∠DCE + ∠CDE + ∠CED = 180° 

    ⇒ 60° + 70° + ∠CED = 180° 

    ⇒ ∠CED = 50° 

    Now, ∠CED + ∠DEF = 180°     ----(Linear pair)

    ⇒ 50° + x = 180° 

    ⇒ x = 130° 

  • Question 4/10
    5 / -1

    The ratio of two complementary angles is 5 : 4, then find the difference between two angles.
    Solutions

    Given:

    The ratio of two complementary angles is 5 : 4

    Concept Used:

    The sum of the two complementary angles are 90° 

    Calculation:

    Let two angles be 5x and 4x

    5x + 4x = 90

    ⇒ x = 10

    two angles are = 50° and 40° 

    Difference between them = 50° - 40° 

    ⇒ 10° 

    ∴ required difference is 10° 

  • Question 5/10
    5 / -1

    Line AB and CD intersect to each other at 'O'. ∠AOD = 70°. Find the supplementary angle of ∠BOD? 

    Solutions

    Given:

    ∠AOD = 70°

    Calculation:

    ∠AOD + ∠BOD = 180° (Linear pairs of angles)

    ⇒ 70° + ∠BOD = 180°

    ⇒ ∠BOD = 180° - 70°

    ⇒ ∠BOD = 110°

    ∴ Supplementary angle of ∠BOD = 180° - 110° = 70°

    The correct option is 1 i.e. 70°

    Supplementary angle: Two angles are called supplementary when their measures add up to 180°.

    Linear pairs of angles: A linear pair is a pair of adjacent angles that makes a straight line.

  • Question 6/10
    5 / -1

    If in ΔABC, 2∠A = 3∠B = 6∠C, then what is ∠A equal to?
    Solutions

    Given:

    In ΔABC, 2∠A = 3∠B = 6∠C

    Concept Used:

    The sum of all the angles of a triangle is 180°

    Calculation:

    Let, 2∠A = 3∠B = 6∠C = 6k 

    so,  ∠A = 3k,  ∠B = 2k and  ∠C = k

    Now, in ΔABC

    ∠A + ∠B + ∠C = 180°

    3k + 2k + k = 180°

    6k = 180°

    k = 30° 

    ∠A = 3k = 90° 

    ∴ ∠A is 90°

  • Question 7/10
    5 / -1

    If the sides of a triangle are in the ratio 3 ∶ 114 ∶ 314, then the triangle is-
    Solutions

    Given:

    The ratio of the sides of the triangle is 3 ∶ 114 ∶ 314

    Concept used:

    If a2 + b2 > c2, then it is acute triangle

    If a2 + b2 = c2, then it is right triangle

    If a2 + b2 < c2, then it is obtuse triangle

    Calculation:

    Let the side of the triangle be 3x, 5x/4 and 13x/4

    Now, (3x)2 + (5x/4)2

    ⇒ 9x2 + 25x2/16

    ⇒ 169x2/16

    ⇒ (13x/4)2

    Here, (3x)2 + (5x/4)2 = (13x/4)2

    ∴ It is the right-angled triangle

  • Question 8/10
    5 / -1

    The measure of an interior angle of a regular polygon is 160°. How many sides does the polygon have?

    Solutions

    Formula used - 

    In a regular Polygon,

    each interior angle + each exterior angle = 180° 

    ∠ I + ∠ E = 180° 

    Sides = 360°/(exterior angle)

    Given - 

    internal angle of a polygon = 160° 

    Solution - 

    ∠ I = 160° 

    ⇒ ∠ E = 20° 

    ⇒ sides = 360°/20° 

    ⇒ sides = 18

    ∴ sides of polygon = 18.

    Alternate MethodInterior angle of a regular polygon = 180×(n2)n

    Where

    n = number of sides

    160 = 180×(n2)n

    160n = 180n - 360

    20n = 360 

    n = 18

    ∴ Number of sides of a regular polygon = 18

  • Question 9/10
    5 / -1

    If the number of diagonal is 135 then find the number of sides of the polygon.
    Solutions

    Given:

    Number of diagonals in a polygon is 135

    Concept used:

    Number of diagonals = n (n – 3)/2

    Where n is the number of sides in a polygon

    Calculation:

    Total number of diagonals is 135

    ∴ 135 = n (n - 3)/2

    ⇒ n2 – 3n – 270 = 0

    ⇒ n2 – 18n + 15n – 270 = 0

    ⇒ (n – 18) (n + 15) = 0

    ⇒ n = 18, -15

    ∴ The number of side is 18
  • Question 10/10
    5 / -1

    In the following figure, AOB is a straight line, then find the value of θ?

    Solutions

    Given

    AOB is a straight line.

    Formula:

    If AOB is a straight line, then ∠AOB = 180°.

    Calculation:

    ∠AOD + ∠DOC + ∠COB = 180°

    ⇒ ∠AOD + 70° + ∠COB = 180°

    ⇒ ∠AOD + ∠COB = 180° – 70°

    ⇒ ∠AOD + ∠COB = 110°

    ⇒ θ + 15° + θ – 5° = 110°

    ⇒ 2θ + 10° = 110°

    ⇒ 2θ = 110° – 10°

    ⇒ 2θ = 100°

    ⇒ θ = 100°/2

    ∴ θ = 50°

User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now