Please wait...
/
-
x +
Hence, option B is the correct answer.
a2 + b2 + 1 = 2a
or, a2 – 2a + 1+ b2 = 0
or, (a – 1)2 + b2 = 0
or, a – 1 = 0
so, a = 1
and b = 0
a4 + b7 = 14 + 07 = 1 + 0 = 1
Hence, option A is the correct answer.
Let x/8 = p
We know that, if p + 1/p = 1, then p3 = -1
∴ x3/83 = -1 [From (i)]
⇒ x3/512 = -1
⇒ x3 = -512
Hence, option D is the correct answer.
1002 – 992 + 982 – 972 + 962 – 952 + 942 – 932 + …… 222 – 212?
= (100 + 99)(100 – 99) + (98 + 97)(98 – 97) + …………+ (22 + 21)(22 – 21)
[since a2 – b2 = (a + b)(a – b)]
= (100 + 99)(1) + (98 + 97)(1) + …………+ (22 + 21)(1)
= 100 + 99 + 98 + 97 + …………+ 22 + 21
It is an A.P series, where n = 80, first term(a) = 21 and last term(l) = 100
We know that,
Sum of n terms(n) = [n/2][a + l]
= [80/2][21 + 100]
= [40][121] = 4840
What is the simplified form of the expression (1 + x) (1 + x2) (1 + x4) (1 + x8) (1 – x)?
= (1 – x)(1 + x) (1 + x2) (1 + x4) (1 + x8)
= (1 - x2)(1 + x2) (1 + x4)(1 + x8)
= (1 – x4)(1 + x4)(1 + x8)
= (1 – x8)(1 + x8)
= 1 – x16
Hence, option C is the correct answer.
p – = 6
p2 + = (p – )2 + 2 = 62 + 2 = 38
p4 + = (p2 + )2 – 2 = 382 – 2 = 1442
"Hence, option C is the correct answer."
x4 – 15x3 + 15x2 – 15x + 40
= 144 – (14+1)143 + (14+1)142 – (14 + 1)14 + 40
= 144 - 144 – 143 + 143 + 142 – 142 – 14 + 40
= 40 – 14 = 26
"Hence, option B is the correct answer."
(a + b)2 – (a – b)2
= (a2 + 2ab + b2) - (a2 - 2ab + b2)
= a2 + 2ab + b2 - a2 + 2ab - b2
= 4ab
"Hence, option D is the correct answer."
We know that:
If x + 1/x = n, then x3 + 1/x3 = (n)3 – 3(n)
x + 1/x = 2
∴ x3 + 1/x3 = (2)3 – 3(2)
= 8 – 6
= 2
⇒
∴
= 64 – 12
= 52
Correct (-)
Wrong (-)
Skipped (-)