Please wait...
/
-
sin8 θ + cos8 θ – 1 = 0 ⇒ sin2 θ + cos2 θ - sin8 θ – cos8 θ = 0 ⇒ sin2 θ(1-sin6θ) + cos2θ(1-cos6θ) = 0 ⇒ sin2 θ(1-sin2θ) (1+sin2θ+sin4θ)+ cos2θ(1-cos2θ) (1+cos2θ+cos4θ) = 0 ⇒ sin2θ cos2θ (1+sin2θ+sin4θ)+ sin2θ cos2θ (1+cos2θ+cos4θ) = 0 ⇒ sin2θ cos2θ(1+sin2θ+sin4θ + 1+cos2θ+cos4θ) = 0⇒ sin2θ cos2θ(3+ sin4θ + cos4θ) = 0 ⇒ sin2θ cos2θ(3+ 1 - 2 sin2θ cos2θ) = 0 ⇒ sin2θ cos2θ(4 - 2 sin2θ cos2θ) = 0
since, θ ≠ 0 or π/2sin2θ.cos2θ ≠ 0So, 4 - 2 sin2θ cos2θ = 0⇒ sin2θ cos2θ = 2
Let us divide numerator and denominator of the given expression by cosP.
∴
Put tanP = 3/4
=
Hence, option A is the correct answer.
= = 1
Hence, option B is the correct answer.
Given, sinθ – cosθ = 0 ⇒ sin θ = cos θ ⇒ tanθ = 1⇒ θ = 45o
So, sec 45o + cosec 45o
Correct (-)
Wrong (-)
Skipped (-)