Please wait...
/
-
Directions For Questions
Direction: Read the caselet given below & answer the following questions.
A shopkeeper buys some furniture – table, chair, beds & also a few kitchen accessories which included Gas stove, DISHWASHER, water filter and Juicer. The cost of each table is 13.5 times the cost of a Juicer and the cost of chair is 3/5 Of the cost of a table. The cost of a bed is 5 times the cost of a chair. The cost of a Gas stove is 20% more than the cost of a chair, A DISHWASHER costs Rs. 1500 more than a table and the water filter costs 4 times a Juicer. The cost of a Juicer is Rs. 1000 .
...view full instructions
What will be the total cost (In Rs.) of 1 table and 2 chairs together?
Cost of a Juicer is ₹ 1000 Cost of a table = ₹ 1000 × 13.5 = ₹13500
Cost of a chair = 3/5 x 13500 = 8100
∴ Cost of 2 chairs = 8100 × 2 = 16200 Cost of 1 table + 2 chairs = 13500 + 16200 = ₹ 29,700.
It was initially decided that 4 beds will be installed but later only 3 beds and a fan were installed. If the cost of a fan is 1/10 of the cost of a bed, what was the total cost incurred?
Cost of a Juicer is ₹ 1000.
Cost of a table = ₹ 1000 × 13.5 = ₹ 13500
Cost of a chair = 3/5 × 13500 = 8100
Cost of a bed = 5 × 8100 = ₹ 40500
Cost of a fan = 40500 × 1/10 = 4050
Now, cost of 3 beds + 1 fan = 3 × 40500 + 4050 = 121500 + 4050 = ₹ 125550
If the cost of a water filter and a Juicer increases by 20% and 15% respectively, what will be the total cost of all kitchen accessories (given that the cost of a DISHWASHER and a Gas stove is the same)?
Cost of a water filter = ₹ 1000 × 4 = ₹ 4000
∴ Cost of all kitchen accessories = Cost of (Gas stove + DISHWASHER + Water filter + Juicer) = 9720 + 15000 + 4800 + 1150 = ₹ 30670.
Stuart bought 1 table, 1 chair and 1 set of all kitchen accessories from the above shopkeeper then what was the total cost incurred to him?
Cost of a Juicer is ₹ 1000
Cost of a Gas stove = 8100 × 120/100 = 9720
Cost of a DISHWASHER = 13500 + 1500 = 15000
Total cost = 13500 + 8100 + 1000 + 4000 + 9720 + 15000 = ₹ 51320
Train A crossed a man in 12 seconds and crossed a train B running in the opposite direction in 24 seconds. If the length of train B is double of the length of train A and speed of train B is 54 km/h, then find the speed of train A.
Let the length of train A be x m and train B be 2x m.
A man wants to invest a total Rs 40,440 in bank account of his two sons, whose age were 12 years and 16 years in such a way that they will get equal amount at the age of 120 years at the rate of 33⅓ % per annum compounded interest. Find the share of younger son.
A = P (1 + r/100)n
Let the principal for younger son be Rs x
Principal for elder son be Rs y
Interest to be calculated for
Younger son = (120 – 1B. = 108 years
Elder son = (120 – 16) = 104 years
Since, amount will be equally distributed then,
Speed of boat in still water is 21 kmph & speed of current is 3 kmph. The boat completes round trip from A to B & then back to A in 7 hrs. Find the distance between A & B.
Distance between A & B = 72 km
A tank is three-fifth full. Pipe A can fill the same tank full in 15 minutes and pipe B can empty the same full tank in 6 minutes. If both pipes open together in how many minutes tank will be fully filled or will get empty?
Let total capacity of the tank = LCM of 15 and 6 = 30 units.
One-minute work of pipe A = 30/15 = 2 units.
One-minute work of pipe B = -30/6 = -5 units.
One-minute work of both pipe = 2 - 5 = -3 units.
3/5th tank filled = 30 × 3/5 = 18 units.
Time taken by both pipe to empty the 18 units = 18/3 = 6 minutes.
The speed of a Train is 20/3% more than the speed of a Car. Both started from the same point at the same instance of time for the other point which is 200 km away. On the way, however, the Train lost about 10 minutes while stopping at the stations. Then find the difference between the speed of Train and speed of the Car?
Let us assume the speed of the car = x km/h
4800 = 4500 + 4x
4x = 300
x = 75 km/h
The speed of a Train is 20/3% more than the speed of a Car.
Difference between the speed of Train and speed of the Car = 20/3 × 1/100 × 75
= 5 km/h
Find the volume of a cylinder, whose lateral surface area is 1056 cm2 and its height is 16 cm. (π = 22/7)
Let the radius of the cylinder be r cm, then
Lateral surface area = 2πrh
2 × 22/7 × x × 16 = 1056 cm2
⇒ x = 10.5 cm
Correct (-)
Wrong (-)
Skipped (-)