Please wait...

CDS II 2024 Mathematics Test - 4
Result
CDS II 2024 Mathematics Test - 4
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0.33

    Solutions

  • Question 2/10
    1 / -0.33

    Solutions

    Given:

    pq + qr + rp = 0        ----(1)

    Calculation:

    Now, We have to find the value of 

    [p2 / (p2 - qr)] + [q2 / (q2 - rp)] + [r2 / (r2 - pq)]

    From equation (i), we get 

    - qr = rp + pq      ----(ii)

    - rp = pq + qr      ----(iii)

    - pq = qr + rp      ----(iv) 

    Now, From equation (ii), (iii) and (iv), we get 

    ⇒ [p2 / (p2 + pq + rp)] + [q2 / (q+ pq + qr)] + [r2 / (r2 + qr + rp)]  

    ⇒ [p2 / p (p + q + r)] + [q2 / q (q + p + r)] + [r2 / r (r + q +p)]

    ⇒ [p / (p + q + r)] + [q / (p + q + r)] + [r / (p + q + r)]

    ⇒ (p + q + r) / (p + q + r)

    ⇒ 1

    ∴ The required value of the expression is 1.

  • Question 3/10
    1 / -0.33

    Solutions

    Shortcut Trick

    ⇒ 1 × 2

    ⇒ 2

    From option 1.

    ⇒ 2 (x2 + y2)

    ⇒ 2 × (1 + 0)

    ⇒ 2 × 1

    ⇒ 2 (satisfied)

    Alternate Method

  • Question 4/10
    1 / -0.33

    Which of the following statements is/are TRUE?

    (A) If N = (2378)2 + 2378 + 2379, then the value of √N is 2379.

    (B) The unit digit of 349 × 468 × 637 × 698 × 436 is 6.

    (C) The total number of positive factors of 3024 is 40.

    Solutions

    (A) If N = (2378)2 + 2378 + 2379, then the value of √N is 2379.

    ⇒ N = 23782 + 2378 + 2378 + 1

    ⇒ N = 23782 + (2 × 2378) + 1

    ⇒ N = 23782 + (2 × 2378) + 12

    ⇒ N = (2378 + 1)2

    ⇒ √N = 2379

    ∴ (A) is correct statement.

    (B) The unit digit of 349 × 468 × 637 × 698 × 436 is 6.

    ⇒ 9 × 8 × 7 × 8 × 6

    ⇒ (72) × (56) × 6

    ⇒ (2 × 6) × 6

    ⇒ 72

    ⇒ 2

    ∴ The unit digit of the given expression is 2.

    So, (B) is the wrong statement.

    (C) The total number of positive factors of 3024 is 40.

    ⇒ 3024 = 24 × 33 × 71

    Let there be a composite number N and its prime factors be a, b, c, d, … etc. and p, q, r, s, … etc. be the indices (or powers) of the a, b, c, d, … etc respectively i.e., if N can be expressed as –

    N = a×  bq × cr × ds…..

    ⇒ The number of positive number of factors = (p + 1) (q + 1) (r + 1) (s + 1)

    ∴ The total number of positive factors of 3024 is (4 + 1) (3 + 1) (1 + 1) = 40

    ∴ (C) is the correct statement.

    ∴ A and C both are correct.

  • Question 5/10
    1 / -0.33

    In ‘p/q’ is a fraction where q ≠ 0 when 6 is added to both numerator and denominator, then it becomes 7/9 and when 4 is subtracted from both numerator and denominator, then it becomes 1/2, then what is the simplified value of ‘p/q’?

    Solutions

    GIVEN:

    When 6 is added to both numerator and denominator, then it becomes 7/9 and when 4 is subtracted from both numerator and denominator, then it becomes 1/2.

    CALCULATION:

    According to the question:

    (p + 6)/(q + 6) = 7/9

    ⇒ 9p + 54 = 7q + 42

    ⇒ 7q - 9p = 12  ---(1)

    And

    (p - 4)/(q - 4) = 1/2

    ⇒ 2p - 8 = q - 4

    ⇒ 2p - q = 4       ---(2)

    Multiplying equation (2) by 7 and adding in equation (1):

    (7q - 9p) + (14p - 7q) = 12 + 28

    ⇒ 5p = 40

    ⇒ p = 8 and q = 12

    ∴ Simplified value of (p/q) = 8/12 = 2/3

  • Question 6/10
    1 / -0.33

    If (x2 - 4) is a factor of x4 - 5x3 + ax2 + bx + c, then which of the following represents the correct relation between a and c.

    Solutions

    Given:

    If (x2 - 4) is a factor of x4 - 5x3 + ax2 + bx + c

    Calculation:

    If (x2 - 4) is a factor of x4 - 5x3 + ax2 + bx + c

    We know, x = +2, -2

    Put the value of x and polynomial is equal to 0

    P(2) = 16 - 40 + 4a + 2b + c = 0

    ⇒ 4a + 2b + c = 24 ---(1)

    P(-2) = 16 + 40 + 4a -2b + c = 0

    ⇒ 4a - 2b + c = -56

    Adding (1) and (2)

    ⇒ 8a + 2c = -32

    ⇒ 4a + c + 16 = 0

    ∴ The required answer is 4a + c + 16 = 0

  • Question 7/10
    1 / -0.33

    Solutions

    ∴ (x3 + y3 + z3) = 3xyz

  • Question 8/10
    1 / -0.33

    Question: which statement satisfied the height of triangular field is 200 m ?

    Statement- I: Base of a triangular field is 7 times height of triangular field. Rs 1400 is cost of rolling Rs 100 per hectare on field.

    Statement - II: Base of a triangular field is 3 times height of triangular field. Rs 1350 is cost of rolling Rs 100 per hectare on field.

    Solutions

    Given:

    Statement I base is 7 times height of triangular field

    Rolling cost Rs 1400 Rs 100 per hectare

    Statement II base is 3 times height of triangular field

    Rolling cost Rs 1350 Rs 100 per hectare

    Formula used:

    Area of triangle = 1/2 × b × h (b = base and h = height)

    Calculation:

    Statement-I

    ⇒ b = 7h

    ⇒ Area of triangular field (A) = 1400/100 hectare = 14 hectare

    ⇒ A = 14 × 10000 = 140000 m2  (1 hectare = 10000 m2)

    Now,

    ⇒ A = 1/2 × 7h × h

    ⇒ 140000 m2 =(7/2) × h2

    ⇒ 140000 m2 × (2/7) = h2

    ⇒ h = √ 40000 m2 = 200 m

    Statement-II

    ⇒ b = 3h

    ⇒ Area of triangular field (A) = 1350/100 hectare = 13.5 hectare

    ⇒ A = 13.5 × 10000 = 135000 m2  (1 hectare = 10000 m2)

    Now,

    ⇒ A = 1/2 × 3h × h

    ⇒ 135000 m=(3/2) × h2

    ⇒ 135000 m× (2/3) = h2

    ⇒ h = √ 90000 m2 = 300 m

    ∴ The correct answer is option 1.

  • Question 9/10
    1 / -0.33

    What is the ratio of the volume of the cube to the volume of the cuboid?

    Statement I: The Total Surface Area of the cuboid is 550 cm2 and the ratio of the length, breadth and height of the cuboid is 2 : 3 : 1.

    Statement II: The Total Surface Area of the cube is 384 cm2.

    Statement III: The breadth of the cuboid is 1.5 times of the length of the cuboid and 3 times of the height of the cuboid. The difference between the height and the length of the cuboid is 5 cm.

    Solutions

    Calculation: 

    For Statement I

    Total surface Area of Cuboid = 2(lb + bh + hl)

    Let length be 2y, breadth = 3y & height = y 

    ⇒ 550 = 2(2y × 3y + 3y × y + y × 2y)

    ⇒ 550 = 2 × 11y2

    ⇒ 25 = y2

    ⇒ y = 5

    So, length = 10 cm, breadth = 15 cm, height = 5 cm

    Volume = lbh

    ⇒ 10 × 15 × 5 = 750 cm3

    Statement I alone is not sufficient to answer the question.

    For Statement II

    Total surface Area  of Cube = 6a2

    ⇒ 384 = 6a2

    ⇒ a = 8 cm

    The volume of the Cube = a3

    ⇒ 83 = 512 cm3

    Statement II alone is not sufficient to answer the question.

    For Statement III

    Height of the cuboid = y cm

    Breadth = 3y cm

    Length = 2y cm

    Difference = 2y-y= y cm

    ⇒ y = 5cm

    ∴ Length = 10 cm, Breadth = 15 cm, Height = 5 cm

    Volume = lbh

     ⇒10X 15X 5 = 750 cm3

    Statement III alone is not sufficient to answer the question.

    But Either statement II and  III or statement I and II are sufficient to answer the question.

    ∴ Correct Answer is option (4)

  • Question 10/10
    1 / -0.33

    If x + y + z = 0 and xyz = -1/2 then what is the value of 

    Solutions

    Given:

    x + y + z = 0

    xyz = -1/2

    Formula used:

    (a + b)2 = a2 + b2 + 2ab

    Calculation:

    x + y + z = 0

    ⇒ x + y = -z

    Squaring both side

    ⇒ (x + y)= z2

    ⇒ x2 + y2 + 2xy = z2

    ⇒ x2 + y2 – z2 = -2xy    ----(1)

    Similarly,

    ⇒ x2 + z2 – y2 = -2xz     -----(2)

    ⇒ y2 + z– x2 = -2yz     -----(3)

    Hence, required value,

User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now